metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[(μ -4,4'-bipyridine)(μ -naphthalene-1,4-dicarboxylato)iron(II)]

Jan Boeckmann, Inke Jess and Christian Näther*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Received 16 December 2008; accepted 17 December 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.067; wR factor = 0.141; data-to-parameter ratio = 13.6.

The asymmetric unit of the title compound, $[Fe(C_{12}H_6O_4)-(C_{10}H_8N_2)]$, consists of two independent Fe(II) atoms, two naphthalene-1,4-dicarboxylate anions and two 4,4'-bipyridine ligands. The Fe(II) atoms are each coordinated by four O atoms of the naphthalene-1,4-dicarboxylate anions and two N atoms of the 4,4'-bipyridine ligands within a distorted octahedron. Two Fe(II) atoms are bridged *via* the carboxylate groups of two symmetry-related anions into dimers, which are further connected into chains. These chains are linked by additional anions into layers that are finally connected by the 4,4'-bipyridine ligands into a three-dimensional coordination network.

Related literature

For a related structure, see: Zheng et al. (2005).

Experimental

Crystal data

 $\begin{bmatrix} \operatorname{Fe}(C_{12}H_6O_4)(C_{10}H_8N_2) \end{bmatrix} & V = 3627.9 \text{ (2) } \mathring{A}^3 \\ M_r = 426.20 & Z = 8 \\ \operatorname{Monoclinic}, P2_1/n & \operatorname{Mo} K\alpha \text{ radiation} \\ a = 10.5169 \text{ (4) } \mathring{A} & \mu = 0.87 \text{ mm}^{-1} \\ b = 29.8928 \text{ (10) } \mathring{A} & T = 293 \text{ (2) } \text{ K} \\ c = 11.5578 \text{ (4) } \mathring{A} & 0.09 \times 0.09 \times 0.08 \text{ mm} \\ \beta = 93.178 \text{ (3)}^{\circ} \end{array}$

Data collection

STOE IPDS-2 diffractometer Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008) $T_{min} = 0.923, T_{max} = 0.933$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	523 parameters
$wR(F^2) = 0.141$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
7116 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

21152 measured reflections

 $R_{\rm int} = 0.050$

7116 independent reflections

5305 reflections with $I > 2\sigma(I)$

 Table 1

 Selected geometric parameters (Å, °).

e	1	. ,	
Fe1-O4 ⁱ	2.056 (3)	Fe2-O3 ⁱ	2.020 (3)
Fe1-O1	2.057 (3)	Fe2-O2	2.048 (3)
Fe1-O14	2.215 (3)	Fe2-O11 ⁱⁱⁱ	2.147 (4)
Fe1-N2 ⁱⁱ	2.220 (3)	Fe2-N12 ^{iv}	2.207 (4)
Fe1-N1	2.227 (4)	Fe2-N11	2.246 (4)
Fe1-O13	2.283 (3)	Fe2-O12 ⁱⁱⁱ	2.332 (4)
Symmetry codes:	(i) $x + 1, y, z$; (ii)	x, y, z + 1; (iii)	$-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (iv)
x, y, z - 1.			

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.

This work was supported by the state of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for the facility to use his equipment.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2529).

References

Brandenburg, K. (2008). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Zheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). New J. Chem. pp. 798-804.

Acta Cryst. (2009). E65, m122 [doi:10.1107/S1600536808042992]

Poly[(*µ*-4,4'-bipyridine)(*µ*-naphthalene-1,4-dicarboxylato)iron(II)]

J. Boeckmann, I. Jess and C. Näther

Comment

The structure determination of the title compound was performed as a part of a project on the synthesis of new metal organic frameworks. In this project we have reacted iron(II)sulfate with naphthalene-1,4-dicarboxylic acid in sodium hydroxide and water, which leads to the formation of bis(μ_2 -4,4'-bipyridine)-bis(μ_2 -naphthalene-1,4-dicarboxylate)diiron(II).

In the crystal structure of the title compound each of the two crystallographically iron atoms are surrounded by two N atoms of two symmetry related 4,4'-bipyridine ligands and four O atoms of three naphthalene-1,4-dicarboxylate anions, of which two are related by symmetry. The coordination polyhedron can be described as a distorted octahedra (Fig 1 and tab 1). Two symmetry related anions bridges two different Fe atoms into dimers, which are further connected into chains by these anions (Fig. 2). Such dimers are also found in the structure of $[Eu_2(naphthalene-1,4-dicarboxylate)_3(4,4'-bipyridine)_{0.5}(H_2O)_3]$ - (4,4'-bipyridine) reported by Zheng *et al.* (2005). The second crystallographically independent napthalene-1,4-dicarboxylate anion is coordinated with both O atoms of its carboxyl group to the metal centers. These anions entangle the Fe-naphthalene-1,4-dicarboxylate chains into layers which are parallel to the a/b plane. These layers are further linked by the 4,4'-bipyridine ligands into a three-dimensional coordination network (Fig 3).

Experimental

27.9 mg FeSO₄ \cdot 7 H₂O (0.10 mmol), 33.0 mg naphthalene-1,4-dicarboxylic acid (0.15 mmol), 10.4 mg NaOH (0.26 mmol), 20.0 mg 4,4'-Bipyridine (0.10 mmol) and 5 ml of water were transfered into a glass tube and heated to 150° C for 4 d. On cooling yellow platelets of the title compound were obtained.

Refinement

All H atoms were located in difference map but were positioned with idealized geometry and were refined isotropic with $U_{eq}(H) = 1.2 U_{eq}(C)$ of the parent atom using a riding model with C—H = 0.93 Å.

Figures

Fig. 1. : Crystal structure of the title compund with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = x + 1, y, z; ii = x, y, z + 1; iii = 1.5 - x, -1/2 + y, 1.5 - z; iv = x, y, -1 + z.

Fig. 2. : Crystal structure of the title compound with view of the Fe naphthalene-1,4-dicarboxylate coordination. The co-ligands, 4,4'-bipyridine, are omitted for clarity.

Fig. 3. : Crystal structure of the title compound with view in the direction of the crystallographic a axis.

$Poly[(\mu-4,4'-bipyridine)(\mu-naphthalene-1,4-dicarboxylato)iron(II)]$

Crystal data	
$[Fe(C_{12}H_6O_4)(C_{10}H_8N_2)]$	$F_{000} = 1744$
$M_r = 426.20$	$D_{\rm x} = 1.561 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 18988 reflections
a = 10.5169 (4) Å	$\theta = 1.4 - 27.2^{\circ}$
b = 29.8928 (10) Å	$\mu = 0.87 \text{ mm}^{-1}$
c = 11.5578 (4) Å	T = 293 (2) K
$\beta = 93.178 \ (3)^{\circ}$	Platelets, yellow
$V = 3627.9 (2) \text{ Å}^3$	$0.09\times0.09\times0.08~mm$
Z = 8	

Data collection

STOE IPDS-2 diffractometer	7116 independent reflections
Radiation source: fine-focus sealed tube	5305 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
Detector resolution: 0.150 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.4^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008)	$k = -36 \rightarrow 36$
$T_{\min} = 0.923, \ T_{\max} = 0.933$	$l = -14 \rightarrow 12$
21152 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.067$ H-atom parameters constrained $wR(F^2) = 0.141$ $w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 3.8737P]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.14 $(\Delta/\sigma)_{max} = 0.001$ 7116 reflections $\Delta\rho_{max} = 0.39$ e Å⁻³523 parameters $\Delta\rho_{min} = -0.36$ e Å⁻³Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic o	or	equivalent	isotropic	displ	lacement	parameters	(Å ²	²)
				rear and a second secon		1	······································	···· r ·		r · · · · · · · · ·	1	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.78027 (6)	0.713313 (19)	0.77830 (5)	0.03191 (15)
Fe2	0.77587 (6)	0.580113 (19)	0.67647 (5)	0.03453 (16)
C1	0.4126 (4)	0.64573 (15)	0.7149 (4)	0.0431 (10)
C2	0.3452 (5)	0.68369 (16)	0.7351 (5)	0.0508 (12)
H2	0.3888	0.7106	0.7453	0.061*
C3	0.2125 (5)	0.68347 (16)	0.7410 (5)	0.0527 (12)
Н3	0.1709	0.7104	0.7530	0.063*
C4	0.1427 (4)	0.64543 (15)	0.7297 (4)	0.0408 (10)
C5	0.1460 (5)	0.56099 (17)	0.7074 (5)	0.0546 (12)
Н5	0.0584	0.5598	0.7143	0.065*
C6	0.2098 (6)	0.52337 (18)	0.6930 (6)	0.0707 (17)
H6	0.1658	0.4964	0.6894	0.085*
C7	0.3436 (6)	0.52322 (18)	0.6828 (6)	0.0742 (18)
H7	0.3871	0.4966	0.6725	0.089*
C8	0.4058 (5)	0.56222 (17)	0.6883 (5)	0.0571 (13)
H8	0.4936	0.5620	0.6817	0.069*
C9	0.3448 (4)	0.60389 (15)	0.7037 (4)	0.0452 (11)
C10	0.2088 (5)	0.60334 (15)	0.7128 (4)	0.0447 (10)
C11	0.5559 (4)	0.64965 (14)	0.7160 (3)	0.0352 (9)
01	0.6054 (3)	0.68234 (10)	0.7693 (3)	0.0449 (7)
02	0.6173 (3)	0.61999 (11)	0.6670 (3)	0.0469 (8)
C12	-0.0004 (4)	0.64874 (14)	0.7344 (3)	0.0371 (9)
O3	-0.0671 (3)	0.61916 (11)	0.6834 (3)	0.0493 (8)
O4	-0.0452 (3)	0.68212 (11)	0.7840 (3)	0.0458 (7)

C21	0.7445 (4)	0.94353 (14)	0.8160 (4)	0.0389 (9)
C22	0.7291 (5)	0.91732 (15)	0.9107 (4)	0.0506 (12)
H22	0.7117	0.9306	0.9809	0.061*
C23	0.7392 (5)	0.87040 (16)	0.9035 (4)	0.0498 (12)
H23	0.7263	0.8531	0.9687	0.060*
C24	0.7674 (4)	0.84988 (14)	0.8032 (4)	0.0376 (9)
C25	0.8134 (6)	0.85673 (17)	0.5951 (4)	0.0609 (14)
H25	0.8218	0.8259	0.5892	0.073*
C26	0.8274 (7)	0.8826 (2)	0.5001 (5)	0.0779 (19)
H26	0.8456	0.8692	0.4303	0.093*
C27	0.8147 (7)	0.9291 (2)	0.5054 (5)	0.0775 (19)
H27	0.8242	0.9464	0.4395	0.093*
C28	0.7886 (6)	0.94909 (17)	0.6072 (4)	0.0570 (13)
H28	0.7802	0.9800	0.6101	0.068*
C29	0.7740 (4)	0.92362 (15)	0.7085 (4)	0.0426 (10)
C30	0.7863 (4)	0.87590 (14)	0.7025 (4)	0.0402 (10)
C31	0.7294 (5)	0.99401 (15)	0.8233 (4)	0.0434 (10)
011	0.8268 (4)	1.01802 (11)	0.8276 (3)	0.0608 (9)
012	0.6222 (4)	1.01085 (12)	0.8235 (4)	0.0677 (11)
C32	0.7764 (4)	0.79956 (14)	0.7960 (4)	0.0379 (9)
013	0.8823 (3)	0.78071 (10)	0.7884 (3)	0.0496 (8)
014	0.6754 (3)	0.77705 (10)	0.7947 (3)	0.0450 (7)
C41	0.7818 (4)	0.70824 (15)	0.3412 (4)	0.0403 (10)
C42	0 8945 (4)	0 71142 (17)	0 4109 (4)	0.0454 (11)
H42	0 9728	0 7109	0 3773	0.054*
C43	0 8896 (4)	0.71524 (17)	0 5294 (4)	0.0452 (11)
H43	0.9665	0.7168	0.5731	0.054*
N1	0.7819(4)	0.71690 (12)	0.5860 (3)	0.0407 (8)
C44	0.6740(4)	0.71451 (16)	0.5187 (4)	0.0447(10)
H44	0 5972	0.7159	0 5548	0.054*
C45	0.6972	0.71017 (17)	0 3990 (4)	0.0476 (11)
H45	0.5910	0.7086	0.3574	0.057*
C46	0.3910 0.7822 (4)	0.70478 (15)	0.2126 (4)	0.0393 (10)
C47	0.7022(1) 0.8938(4)	0.70362 (16)	0.2120(1) 0.1559(4)	0.0355(10) 0.0458(11)
H47	0.9717	0.7026	0.1981	0.055*
C/8	0.8901 (4)	0.70309 (16)	0.0356(4)	0.0430 (10)
H48	0.8501 (4)	0.7032	-0.0005	0.0430(10)
N2	0.7827(3)	0.7052	-0.0306(3)	0.032
C/9	0.7827(3)	0.70524 (16)	0.0300(3)	0.0370(8)
H40	0.0737 (4)	0.70524 (10)	-0.0193	0.0443 (11)
C50	0.5970	0.7034	0.0193 0.1439 (4)	0.033°
U50	0.0701 (4)	0.70480 (10)	0.1438 (4)	0.0442 (10)
C51	0.3921 0.7816 (5)	0.7047	1.1148(A)	0.033°
C52	0.7810(5)	0.5830(2)	1.1140(4)	0.0490(12) 0.0728(17)
UJ2 H52	0.0712	0.5846	1.0070 (0)	0.0720(17)
C53	0.9712	0.5040	0.0286 (5)	0.0694 (14)
UJJ H52	0.0004 (0)	0.5000 (2)	0.9300 (3)	0.0004 (10)
N11	0.7034	0.57940 (12)	0.9029	0.002
C54	0.7017 (4)	0.37940(13)	0.0710(3)	0.0492 (9)
0.04	0.0749 (0)	0.3007 (2)	0.9274 (4)	0.0390 (14)

H54	0.5980	0.5794	0.8838	0.071*
C55	0.6709 (6)	0.5839 (2)	1.0456 (4)	0.0642 (15)
H55	0.5926	0.5845	1.0793	0.077*
C56	0.7805 (5)	0.58971 (16)	1.2434 (4)	0.0466 (11)
C57	0.8913 (5)	0.58902 (19)	1.3130 (4)	0.0573 (13)
H57	0.9698	0.5894	1.2797	0.069*
C58	0.8858 (5)	0.58781 (19)	1.4322 (4)	0.0562 (13)
H58	0.9620	0.5873	1.4771	0.067*
N12	0.7758 (4)	0.58739 (13)	1.4864 (3)	0.0441 (9)
C59	0.6696 (5)	0.59193 (17)	1.4197 (4)	0.0512 (12)
Н59	0.5927	0.5945	1.4551	0.061*
C60	0.6680 (5)	0.59301 (18)	1.3002 (4)	0.0536 (12)
H60	0.5910	0.5960	1.2574	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0347 (3)	0.0338 (3)	0.0273 (3)	-0.0002 (2)	0.0020 (2)	-0.0013 (2)
Fe2	0.0383 (3)	0.0346 (3)	0.0307 (3)	-0.0001 (3)	0.0018 (2)	-0.0012 (2)
C1	0.039 (2)	0.046 (2)	0.044 (2)	0.0056 (19)	0.0007 (19)	-0.006 (2)
C2	0.049 (3)	0.040 (2)	0.063 (3)	-0.004 (2)	0.002 (2)	-0.002 (2)
C3	0.049 (3)	0.043 (3)	0.067 (3)	0.000 (2)	0.008 (2)	-0.004 (2)
C4	0.036 (2)	0.045 (2)	0.042 (2)	-0.0040 (19)	0.0024 (19)	-0.0012 (19)
C5	0.045 (3)	0.055 (3)	0.064 (3)	-0.009 (2)	0.003 (2)	0.000 (2)
C6	0.068 (4)	0.042 (3)	0.101 (5)	-0.006 (3)	0.002 (3)	-0.001 (3)
C7	0.067 (4)	0.038 (3)	0.116 (5)	0.004 (3)	-0.001 (4)	-0.008 (3)
C8	0.039 (3)	0.053 (3)	0.079 (4)	0.001 (2)	0.000 (2)	-0.012 (3)
С9	0.043 (3)	0.044 (2)	0.049 (3)	0.001 (2)	0.002 (2)	-0.001 (2)
C10	0.046 (3)	0.042 (2)	0.046 (3)	-0.002 (2)	0.003 (2)	-0.001 (2)
C11	0.037 (2)	0.037 (2)	0.032 (2)	-0.0013 (18)	0.0017 (17)	0.0018 (17)
01	0.0465 (18)	0.0490 (18)	0.0393 (17)	-0.0134 (14)	0.0032 (14)	-0.0098 (14)
O2	0.0446 (18)	0.0493 (18)	0.0471 (18)	0.0060 (15)	0.0068 (15)	-0.0029 (15)
C12	0.041 (2)	0.040 (2)	0.030 (2)	0.0008 (19)	0.0008 (17)	0.0007 (17)
O3	0.0446 (18)	0.0543 (19)	0.0489 (19)	-0.0092 (15)	0.0013 (15)	-0.0082 (15)
O4	0.0478 (18)	0.0520 (18)	0.0376 (16)	0.0123 (15)	0.0022 (14)	-0.0081 (14)
C21	0.042 (2)	0.035 (2)	0.040 (2)	-0.0005 (18)	0.0016 (19)	-0.0020 (18)
C22	0.072 (3)	0.039 (2)	0.043 (3)	0.006 (2)	0.016 (2)	-0.002 (2)
C23	0.068 (3)	0.041 (2)	0.041 (3)	0.002 (2)	0.013 (2)	0.007 (2)
C24	0.040 (2)	0.034 (2)	0.039 (2)	-0.0016 (18)	0.0039 (18)	0.0017 (17)
C25	0.098 (4)	0.044 (3)	0.041 (3)	0.000 (3)	0.010 (3)	-0.005 (2)
C26	0.131 (6)	0.064 (4)	0.039 (3)	0.006 (4)	0.016 (3)	-0.004 (3)
C27	0.129 (6)	0.064 (4)	0.041 (3)	0.010 (4)	0.017 (3)	0.010 (3)
C28	0.083 (4)	0.044 (3)	0.045 (3)	0.003 (3)	0.008 (3)	0.006 (2)
C29	0.050 (3)	0.039 (2)	0.038 (2)	-0.001 (2)	-0.001 (2)	0.0025 (18)
C30	0.048 (3)	0.037 (2)	0.035 (2)	-0.0007 (19)	-0.0009 (19)	-0.0019 (18)
C31	0.055 (3)	0.039 (2)	0.035 (2)	0.002 (2)	0.003 (2)	0.0033 (19)
011	0.067 (2)	0.0405 (18)	0.075 (3)	-0.0081 (17)	0.005 (2)	-0.0023 (17)
012	0.055 (2)	0.049 (2)	0.098 (3)	0.0128 (17)	0.000 (2)	-0.003 (2)

C32	0.042 (2)	0.038 (2)	0.033 (2)	-0.0023 (19)	-0.0006 (18)	0.0007 (17)
O13	0.0375 (17)	0.0417 (18)	0.070 (2)	0.0018 (14)	0.0034 (15)	-0.0044 (15)
O14	0.0412 (17)	0.0352 (16)	0.059 (2)	-0.0033 (13)	0.0029 (15)	-0.0015 (14)
C41	0.043 (2)	0.045 (2)	0.034 (2)	-0.003 (2)	0.0057 (18)	-0.0001 (18)
C42	0.037 (2)	0.066 (3)	0.034 (2)	-0.004 (2)	0.0033 (18)	0.003 (2)
C43	0.040 (2)	0.065 (3)	0.031 (2)	-0.007 (2)	-0.0013 (18)	0.002 (2)
N1	0.050 (2)	0.0400 (19)	0.0321 (19)	-0.0006 (17)	0.0028 (16)	0.0004 (15)
C44	0.044 (2)	0.062 (3)	0.028 (2)	0.005 (2)	0.0056 (19)	0.002 (2)
C45	0.044 (3)	0.068 (3)	0.031 (2)	0.003 (2)	0.0010 (19)	0.004 (2)
C46	0.041 (2)	0.046 (2)	0.031 (2)	-0.0022 (19)	0.0037 (18)	0.0001 (18)
C47	0.040 (2)	0.063 (3)	0.034 (2)	0.001 (2)	-0.0013 (19)	-0.004 (2)
C48	0.036 (2)	0.060 (3)	0.033 (2)	-0.002 (2)	0.0019 (18)	-0.003 (2)
N2	0.043 (2)	0.0399 (19)	0.0282 (17)	-0.0001 (15)	0.0033 (15)	0.0012 (14)
C49	0.037 (2)	0.062 (3)	0.034 (2)	0.002 (2)	-0.0006 (18)	-0.004 (2)
C50	0.040 (2)	0.060 (3)	0.033 (2)	0.003 (2)	0.0018 (18)	-0.002 (2)
C51	0.068 (3)	0.050 (3)	0.031 (2)	0.006 (2)	0.004 (2)	-0.001 (2)
C52	0.061 (3)	0.121 (5)	0.037 (3)	0.017 (3)	0.000 (2)	-0.005 (3)
C53	0.061 (3)	0.106 (5)	0.038 (3)	0.013 (3)	0.005 (2)	0.004 (3)
N11	0.066 (3)	0.047 (2)	0.035 (2)	0.002 (2)	0.0051 (19)	-0.0004 (17)
C54	0.065 (3)	0.081 (4)	0.032 (2)	-0.010 (3)	-0.004 (2)	-0.001 (2)
C55	0.062 (3)	0.097 (4)	0.034 (3)	-0.005 (3)	0.005 (2)	-0.001 (3)
C56	0.058 (3)	0.051 (3)	0.030 (2)	0.004 (2)	-0.001 (2)	0.0001 (19)
C57	0.059 (3)	0.075 (4)	0.038 (3)	0.001 (3)	0.005 (2)	-0.001 (2)
C58	0.054 (3)	0.081 (4)	0.033 (2)	0.000 (3)	0.002 (2)	-0.006 (2)
N12	0.051 (2)	0.050 (2)	0.0309 (19)	0.0037 (18)	0.0040 (17)	-0.0018 (16)
C59	0.059 (3)	0.062 (3)	0.033 (2)	0.005 (2)	0.003 (2)	-0.006 (2)
C60	0.055 (3)	0.071 (3)	0.034 (2)	0.008 (3)	-0.003 (2)	-0.003 (2)

Geometric parameters (Å, °)

2.056 (3)	C28—C29	1.412 (6)
2.057 (3)	C28—H28	0.9300
2.215 (3)	C29—C30	1.435 (6)
2.220 (3)	C31—O12	1.235 (6)
2.227 (4)	C31—O11	1.249 (6)
2.283 (3)	O11—Fe2 ^{vi}	2.147 (4)
2.020 (3)	O12—Fe2 ^{vi}	2.332 (4)
2.048 (3)	C32—O13	1.256 (5)
2.147 (4)	C32—O14	1.257 (5)
2.207 (4)	C41—C45	1.393 (6)
2.246 (4)	C41—C42	1.399 (6)
2.332 (4)	C41—C46	1.490 (6)
1.365 (6)	C42—C43	1.377 (6)
1.442 (6)	C42—H42	0.9300
1.512 (6)	C43—N1	1.340 (6)
1.400 (7)	C43—H43	0.9300
0.9300	N1—C44	1.341 (6)
1.356 (6)	C44—C45	1.388 (6)
	2.056 (3) 2.057 (3) 2.215 (3) 2.220 (3) 2.227 (4) 2.283 (3) 2.020 (3) 2.048 (3) 2.147 (4) 2.207 (4) 2.246 (4) 2.332 (4) 1.365 (6) 1.442 (6) 1.512 (6) 1.400 (7) 0.9300 1.356 (6)	2.056 (3)C28—C292.057 (3)C28—H282.215 (3)C29—C302.220 (3)C31—O122.227 (4)C31—O112.283 (3)O11—Fe2 ^{vi} 2.020 (3)O12—Fe2 ^{vi} 2.048 (3)C32—O132.147 (4)C32—O142.207 (4)C41—C452.246 (4)C41—C422.332 (4)C41—C461.365 (6)C42—H421.512 (6)C43—N11.400 (7)C43—H430.9300N1—C441.356 (6)C44—C45

С3—Н3	0.9300	C44—H44	0.9300
C4—C10	1.456 (6)	С45—Н45	0.9300
C4—C12	1.512 (6)	C46—C47	1.377 (6)
C5—C6	1.325 (8)	C46—C50	1.385 (6)
C5—C10	1.428 (7)	C47—C48	1.388 (6)
С5—Н5	0.9300	С47—Н47	0.9300
C6—C7	1.419 (8)	C48—N2	1.330 (5)
С6—Н6	0.9300	C48—H48	0.9300
С7—С8	1.336 (7)	N2—C49	1.344 (5)
С7—Н7	0.9300	N2—Fe1 ^{iv}	2.220 (3)
C8—C9	1.417 (7)	C49—C50	1.378 (6)
C8—H8	0.9300	С49—Н49	0.9300
C9—C10	1.440 (7)	С50—Н50	0.9300
C11—O2	1.250 (5)	C51—C55	1.377 (7)
C11—O1	1.253 (5)	C51—C52	1.379 (7)
C12—O3	1.255 (5)	C51—C56	1.490 (6)
C12—O4	1.256 (5)	C52—C53	1.377 (7)
O3—Fe2 ^v	2.020 (3)	С52—Н52	0.9300
O4—Fe1 ^v	2.056 (3)	C53—N11	1.330 (7)
C21—C22	1.363 (6)	С53—Н53	0.9300
C21—C29	1.427 (6)	N11—C54	1.331 (7)
C21—C31	1.520 (6)	C54—C55	1.373 (7)
C22—C23	1.410 (6)	C54—H54	0.9300
С22—Н22	0.9300	С55—Н55	0.9300
C23—C24	1.358 (6)	C56—C57	1.379 (7)
С23—Н23	0.9300	C56—C60	1.387 (7)
C24—C30	1.423 (6)	C57—C58	1.382 (7)
C24—C32	1.510 (6)	С57—Н57	0.9300
C25—C26	1.358 (7)	C58—N12	1.346 (6)
C25—C30	1.410 (6)	С58—Н58	0.9300
C25—H25	0.9300	N12—C59	1.329 (6)
C26—C27	1.398 (8)	N12—Fe2 ⁱⁱ	2.207 (4)
C26—H26	0.9300	C59—C60	1.381 (6)
C27—C28	1.361 (8)	С59—Н59	0.9300
С27—Н27	0.9300	С60—Н60	0.9300
O4 ⁱ —Fe1—O1	126.27 (13)	C27—C28—C29	121.1 (5)
O4 ⁱ —Fe1—O14	146.62 (12)	С27—С28—Н28	119.4
O1—Fe1—O14	86.76 (12)	С29—С28—Н28	119.4
O4 ⁱ —Fe1—N2 ⁱⁱ	87.63 (13)	C28—C29—C21	122.4 (4)
O1—Fe1—N2 ⁱⁱ	87.88 (13)	C28—C29—C30	118.8 (4)
O14—Fe1—N2 ⁱⁱ	89.13 (12)	C21—C29—C30	118.8 (4)
O4 ⁱ —Fe1—N1	89.88 (13)	C25—C30—C24	122.8 (4)
O1—Fe1—N1	91.57 (13)	C25—C30—C29	118.0 (4)
O14—Fe1—N1	94.34 (13)	C24—C30—C29	119.1 (4)
N2 ⁱⁱ —Fe1—N1	176.46 (13)	O12—C31—O11	120.8 (4)
O4 ⁱ —Fe1—O13	89.00 (12)	O12—C31—C21	120.2 (4)

O1—Fe1—O13	144.73 (12)	O11—C31—C21	118.9 (4)
O14—Fe1—O13	58.08 (11)	C31—O11—Fe2 ^{vi}	94.9 (3)
N2 ⁱⁱ —Fe1—O13	93.68 (13)	C31—O12—Fe2 ^{vi}	86.7 (3)
N1—Fe1—O13	88.78 (13)	O13—C32—O14	120.7 (4)
O3 ⁱ —Fe2—O2	109.11 (13)	O13—C32—C24	120.6 (4)
O3 ⁱ —Fe2—O11 ⁱⁱⁱ	155.44 (14)	O14—C32—C24	118.6 (4)
Ω^2 —Fe2— Ω^{11}^{iii}	95.45 (13)	C32—O13—Fe1	89.1 (2)
$O3^{i}$ Fe ² N12 ^{iv}	86.43 (14)	C32—O14—Fe1	92.1 (3)
$O_2 = E_{a2} = N_{12}^{iv}$	86.23 (13)	C45-C41-C42	1159(4)
	05.24 (15)		122.0 (4)
OII Fe2N12	93.24 (13)		122.0 (4)
O3 ¹ —Fe2—N11	89.30 (15)	C42—C41—C46	122.0 (4)
02—Fe2—N11	92.12 (14)	C43—C42—C41	120.1 (4)
O11 ¹¹¹ —Fe2—N11	89.99 (15)	C43—C42—H42	120.0
N12 ^{iv} —Fe2—N11	174.64 (15)	C41—C42—H42	120.0
O3 ⁱ —Fe2—O12 ⁱⁱⁱ	97.94 (13)	N1—C43—C42	124.5 (4)
O2—Fe2—O12 ⁱⁱⁱ	152.87 (13)	N1—C43—H43	117.7
O11 ⁱⁱⁱ —Fe2—O12 ⁱⁱⁱ	57.51 (13)	C42—C43—H43	117.7
N12 ^{iv} —Fe2—O12 ⁱⁱⁱ	93.59 (15)	C43—N1—C44	115.2 (4)
N11—Fe2—O12 ⁱⁱⁱ	90.21 (15)	C43—N1—Fe1	122.6 (3)
C2—C1—C9	118.5 (4)	C44—N1—Fe1	121.5 (3)
C2C1C11	117.5 (4)	N1-C44-C45	124.4 (4)
C9—C1—C11	123.8 (4)	N1-C44-H44	117.8
C1—C2—C3	122.2 (4)	C45—C44—H44	117.8
C1—C2—H2	118.9	C44—C45—C41	119.8 (4)
С3—С2—Н2	118.9	C44—C45—H45	120.1
C4—C3—C2	122.3 (5)	C41—C45—H45	120.1
С4—С3—Н3	118.8	C47—C46—C50	116.6 (4)
С2—С3—Н3	118.8	C47—C46—C41	121.8 (4)
C3—C4—C10	118.5 (4)	C50—C46—C41	121.6 (4)
C3—C4—C12	118.5 (4)	C46—C47—C48	119.9 (4)
C10-C4-C12	123.0 (4)	C46—C47—H47	120.0
C6—C5—C10	121.5 (5)	C48—C47—H47	120.0
С6—С5—Н5	119.3	N2-C48-C47	123.6 (4)
С10—С5—Н5	119.3	N2-C48-H48	118.2
C5—C6—C7	121.6 (5)	C47—C48—H48	118.2
С5—С6—Н6	119.2	C48—N2—C49	116.4 (4)
С7—С6—Н6	119.2	C48—N2—Fe1 ^{iv}	122.6 (3)
C8—C7—C6	118.6 (5)	C49—N2—Fe1 ^{iv}	120.8 (3)
С8—С7—Н7	120.7	N2—C49—C50	123.2 (4)
С6—С7—Н7	120.7	N2—C49—H49	118.4
С7—С8—С9	123.3 (5)	С50—С49—Н49	118.4
С7—С8—Н8	118.4	C49—C50—C46	120.3 (4)
С9—С8—Н8	118.4	С49—С50—Н50	119.9
C8—C9—C10	117.3 (4)	С46—С50—Н50	119.9
C8—C9—C1	123.2 (4)	C55—C51—C52	115.6 (4)

C10—C9—C1	119.4 (4)	C55—C51—C56	122.0 (5)			
C5—C10—C9	117.8 (4)	C52—C51—C56	122.4 (5)			
C5-C10-C4	123.3 (4)	C53—C52—C51	119.9 (5)			
C9—C10—C4	118.9 (4)	С53—С52—Н52	120.0			
O2-C11-O1	124.4 (4)	С51—С52—Н52	120.0			
O2-C11-C1	118.7 (4)	N11—C53—C52	124.8 (5)			
O1-C11-C1	116.8 (4)	N11—C53—H53	117.6			
C11—O1—Fe1	136.2 (3)	С52—С53—Н53	117.6			
C11—O2—Fe2	145.8 (3)	C53—N11—C54	114.8 (4)			
O3—C12—O4	124.1 (4)	C53—N11—Fe2	124.3 (3)			
O3—C12—C4	118.0 (4)	C54—N11—Fe2	120.7 (3)			
O4—C12—C4	117.9 (4)	N11—C54—C55	124.2 (5)			
C12—O3—Fe2 ^v	149.3 (3)	N11—C54—H54	117.9			
C12—O4—Fe1 ^v	134.6 (3)	С55—С54—Н54	117.9			
C22—C21—C29	120.0 (4)	C54—C55—C51	120.7 (5)			
C22—C21—C31	120.6 (4)	С54—С55—Н55	119.7			
C29—C21—C31	119.4 (4)	С51—С55—Н55	119.7			
C21—C22—C23	120.8 (4)	C57—C56—C60	116.1 (4)			
C21—C22—H22	119.6	C57—C56—C51	121.8 (5)			
С23—С22—Н22	119.6	C60—C56—C51	122.1 (4)			
C24—C23—C22	121.4 (4)	C56—C57—C58	120.1 (5)			
C24—C23—H23	119.3	С56—С57—Н57	119.9			
С22—С23—Н23	119.3	С58—С57—Н57	119.9			
C23—C24—C30	119.9 (4)	N12—C58—C57	123.3 (5)			
C23—C24—C32	120.9 (4)	N12—C58—H58	118.4			
C30—C24—C32	119.2 (4)	С57—С58—Н58	118.4			
C26—C25—C30	121.1 (5)	C59—N12—C58	116.4 (4)			
C26—C25—H25	119.5	C59—N12—Fe2 ⁱⁱ	122.8 (3)			
C30—C25—H25	119.5	C58—N12—Fe2 ⁱⁱ	120.8 (3)			
C25—C26—C27	121.1 (5)	N12—C59—C60	123.1 (5)			
С25—С26—Н26	119.5	N12—C59—H59	118.4			
C27—C26—H26	119.5	С60—С59—Н59	118.4			
C28—C27—C26	119.9 (5)	C59—C60—C56	120.5 (5)			
С28—С27—Н27	120.0	С59—С60—Н60	119.7			
С26—С27—Н27	120.0	С56—С60—Н60	119.7			
Symmetry codes: (i) $x+1$, y , z ; (ii) x , y , $z+1$; (iii) $-x+3/2$, $y-1/2$, $-z+3/2$; (iv) x , y , $z-1$; (v) $x-1$, y , z ; (vi) $-x+3/2$, $y+1/2$, $-z+3/2$.						

